УДК 546.791.027*237:539.172.3

О.Д. Маслов, М.В. Густова, Г.А. Божиков, В.К. Семина, С.Н. Дмитриев

Лаборатория ядерных реакций им. Г. Н. Флерова Объединенного института ядерных исследований, Россия, 141980, Дубна, ул. Жолио–Кюри, 6, <u>gust@jinr.ru</u>

ПРИМЕНЕНИЕ НАНОСТРУКТУРИРОВАННОЙ ДВУОКИСИ МАРГАНЦА ТИПА КРИПТОМЕЛАНА ДЛЯ ПОЛУЧЕНИЯ ПРЕПАРАТА ПО РЕАКЦИИ ²³⁸U(γ, n) ²³⁷U

Получена 1 сентября 2010 года Опубликована 9 ноября 2010 года

02.00.14 - Радиохимия

Разработан метод разделения изотопов урана: ²³⁸U и ²³⁷U, получаемого в реакции ²³⁸U(γ ,n)²³⁷U, с использованием наноструктурированной двуокиси марганца (типа криптомелана). Проверены параметры наноструктурированной двуокиси марганца, используемой в качестве акцептора ²³⁷U. Подтверждено, что в криптомелане ²³⁷U в основном находится в валентном состоянии +4. Получен препарат с удельной активностью 4,5.10⁹ Бк/мг ²³⁸U и высокой степенью очистки, содержанием радиоактивных примесей $\leq 10^{-6}$ Бк/Бк.

<u>Ключевые слова</u>: Разделение изотопов, уран–237, наноструктурированная двуокись марганца, криптомелан, рентгеновский анализ, катионообменное разделение, валентное состояние

Ядерно-физические характеристики изотопа 237 U (T_{1/2} = 6,75 суток; E_γ=59,5 кэВ (33,5 %) и 208,0 кэВ (21,7 %)) делают его весьма удобным для применения в качестве отметчика в радиоэкологических исследованиях при изучении поведения урана в биосфере, а также в лабораторных экспериментах по моделированию его поведения в различных природных и техногенных системах [1,2].

Однако до последнего времени использование изотопа ²³⁷U не получило широкого практического применения из—за отсутствия подходящих методов для его производства. В предыдущих работах [2,3] сообщалось о получении ²³⁷U по реакции ²³⁸U(γ , n)²³⁷U.

1

© ФГУП «НИИПА»

Молекулярные технологии www.niipa.ru/journal

Целью данной работы было изучение наноструктурированной двуокиси марганца типа криптомелана, применяемой в качестве акцептора для сбора ядер отдачи в фотоядерной реакции, и уточнение валентного состояния урана–237 на криптомелане. Это позволило усовершенствовать методики выделения и очистки полученного ²³⁷U для получения препарата с повышенной удельной активностью и чистотой.

Природный криптомелан K₂(Mn⁴⁺,Mn²⁺)₈(O,OH)₁₆ относится к группе гидроксидов, обладающих туннельной голландитовых структурой, образованной двойными и тройными цепочками октаэдров Mn⁴⁺. В центре данной структуры находятся более крупные катионы (K, Pb, Ba, Mn^{2+}), трубчатой определяющие размер структуры, И. соответственно, обеспечивающие высокую ионообменную селективность к ионам, имеющим определенный эффективный ионный радиус. В случае криптомелана такой радиус равен 1,3–1,5 Å, что делает его перспективным материалом для сбора ядер отдачи урана.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Криптомелан был получен добавлением раствора $0,5 \text{ M KMnO}_4$ в $1 \text{ M H}_2\text{SO}_4$ к равному объему раствора 1 M MnSO_4 в $1 \text{ M H}_2\text{SO}_4$ при перемешивании и температуре $60 \,{}^0\text{C}$ [4]. После охлаждения смеси производили разделение осадка и раствора фильтрованием через ядерный фильтр.

Фазовый анализ полученного порошка выполнили методом рентгеновского анализа на модифицированном дифрактометре ДРОН–4 (съемка, управляемая компьютером) при следующих условиях съемки: излучение Cu (λ =0,154178 нм), в диапазоне 2 θ =10–100° с шагом Δ 2 θ =0,1°, экспозиция в точке τ =4 с.

Образцы полученного криптомелана массой 100 мг в смеси с соединением $UO_2(NO_3)_2$ природного урана в весовом соотношении 5 : 1 Молекулярные технологии, 2010, 4.1, 1-8 2 $© \Phi \Gamma Y \Pi$ «НИИПА» <u>http://www.niipa.ru/journal/articles/4.1-1.pdf</u>

Молекулярные технологии www.niipa.ru/journal

использовали в качестве мишеней для облучения на микротроне МТ–25 ЛЯР ОИЯИ. Облучение проводили в течение 4 часов тормозным излучением электронов с E_e= 24,5 МэВ. Ток электронов был равен 15 мкА.

После 24–часового охлаждения (для уменьшения активности продуктов деления) проводили извлечение из криптомелана ²³⁸U и ²³⁷U и последующее концентрирование ²³⁷U.

Разделение и концентрирование ^{237}U

Ранее проведенные исследования по определению коэффициентов распределения (*Kd*) для ²³⁸U и ²³⁷U на криптомелане в зависимости от концентрации азотной кислоты [3] показали, что ²³⁷U имеет более высокий *Kd*, чем ²³⁸UO₂²⁺, и для ²³⁷U максимальное значение *Kd* \cong 2,5 ^{10³} см³/ г достигается при концентрации азотной кислоты меньше 0,01 M, что позволяет разделить изотопы урана. Для этого облученную мишень после 24–часового "охлаждения" обрабатывали водным раствором для растворения ²³⁸UO₂(NO₃)₂.

После разделения осадка и водного раствора осадок растворяли в 1:1 смеси 1 М HNO₃ + 0,1 М NH₄SCN и проводили катионообменное разделение ^{237}U И осколков деления на колонке, заполненной катионитом Dowex 50 × 2 мм (200 меш). Дальнейшую очистку и концентрирование урана-237 осуществляли ионообменной хроматографией на колонке 50×2 мм, заполненной анионообменной смолой Dowex 1 × 8 (200 меш), из 10 % раствора 9 М HCl в этаноле [3]. На конечной стадии ²³⁷U элюировали 100 мкл 1 М НNO₃.

Радионуклидную чистоту препарата оценивали как отношение активности примеси к активности основного радионуклида, выраженное в Бк/Бк, а удельную активность – как отношение активности препарата к его массе, нормированной на 1 мг.

3

© ФГУП «НИИПА»

Спектрометрия ${}^{237}Uu {}^{238}U$

Гамма-спектрометрические измерения различных фракций И конечного препарата выполняли с использованием детектора из сверхчистого Ge с разрешением 1,5 кэВ на линии 1,33 МэВ (⁶⁰Со) фирмы «Canberra». Погрешность измерений в зависимости от интенсивности гамма-линий определяемых радионуклидов составила 3 – 5%. Детектирование ²³⁷U линиям с $E_{\gamma} = 0,06 \text{ МэВ} (36 \%), 0,114 \text{ МэВ} (0,06 \%),$ осуществляли по 0,165 МэВ (2,0 %), 0,208 МэВ (23%) [6]. Измерения рентгеновских спектров препаратов и определение в них содержания ²³⁸U и стабильных элементов проводили на Si(Li) детекторе с разрешением ~200 эВ на линии Fe_{Ka1} (6,4 кэВ) с возбуждением рентгеновского излучения радиоизотопным источником ¹⁰⁹Cd.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Сопоставление с базой рентгеновских данных показало, что спектр исследуемого образца хорошо описывается фазой $K_{0,33}$ MnO₂ с тетрагональной решеткой, *tI*28/23. На рисунке 1 показаны полученный спектр и спектр фазы $K_{0,33}$ MnO₂ в виде штрих–диаграммы.

На представленном спектре видно, что дифракционные пики уширены деформации решетки и/или областей вследствие малого размера когерентного рассеяния (ОКР) (кристаллитов). Подгон параметров решетки тетрагональной фазы и размытие рефлексов показал, образец ЧТО практически на 100% состоит из тетрагональной фазы типа K_{0.33}MnO₂ (*tI*28/23) с периодами решетки: *a*=0,9811 нм, *c*=0,2843 нм.

Определено, что размер ОКР вдоль кристаллографической оси c составляет примерно 150±50 нм, перпендикулярно оси $c - 7,5\pm0,5$ нм; микродеформации в направлениях, параллельных и перпендикулярных оси c, $-0,18\pm0,01\%$.

4

Молекулярные технологии

www.niipa.ru/journal

Рис.1. Штрих-рентгенограмма фазы K_{0.33}MnO₂, наложенная на спектр

На фотографии образца, полученной при помощи растрового электронного микроскопа (Рис. 2), видно, что кристаллиты действительно сильно вытянуты параллельно оси *c*, т.е. имеют игольчатую морфологию.

Полученные результаты полностью соответствуют ранее опубликованным данным для криптомелана [5].

Рис. 2. Фотография образца криптомелана, полученная при помощи растрового электронного микроскопа

5

Молекулярные технологии, 2010, 4.1, 1-8 <u>http://www.niipa.ru/journal/articles/4.1-1.pdf</u>

Молекулярные технологии www.niipa.ru/journal

На рисунке 3 показана схема катионообменного разделения и концентрирования ²³⁷U, а на рис.4 представлена хроматограмма данного разделения.

Из рисунка 3 и рисунка 4 видно, уран элюируется вместе с 4– валентным Zr, что подтверждает 4–валентное состояние ²³⁷U [3].

После полной схемы очистки полученный препарат 237 U не содержал примесей радионуклидов [3]. Коэффициент очистки 237 U от продуктов деления был $\geq 10^6$, удельная активность равнялась 4,5[•]10⁹ Бк/мг 238 U.

Радионуклиды	Mn	²³⁷ U	¹⁰⁵ Ru, ¹⁰⁵ Rh	⁹⁵ Zr	¹⁴³ Ce	¹⁴⁰ Ba/ ⁹¹ Sr	²³⁸ U, (¹³² I),
Раствор			%				
$0.01 \mathrm{M} \mathrm{HNO}_3 \longrightarrow$		15					99.9
1M HNO ₃ +0.1 M	Растворени	е осадка					
NH4SCN	М'n						
$1.5M \text{ HNO}_3 \text{ IV} \longrightarrow$	D		95				
	0						
$1.5M HNO_3 2V \longrightarrow$	W	4.4					
	T						
$1.5M \text{ HNO}_3 + 0.01 \text{HF} \rightarrow$	E	80		95.7		0/2.5	
	X						
$3M HNO_3 \longrightarrow$	50	0.2		2.5		94/	
						84.5	
	X						
4.5M HNO ₃ →	8	0.28		1.8	100	6/13	

Рис. 3. Схема катионообменного разделения и концентрирования 237 U

6

Молекулярные технологии

www.niipa.ru/journal

Рис.4. Хроматограмма катионообменного разделения

выводы

1. Разработан метод разделения изотопов урана: ²³⁸U и ²³⁷U, получаемого в реакции ²³⁸U (γ, n)²³⁷U, с использованием наноструктурированной двуокиси марганца (типа криптомелана).

2. Проверены параметры наноструктурированной двуокиси марганца, используемой в качестве акцептора ²³⁷U.

3. Подтверждено, что в криптомелане ²³⁷U в основном находится в валентном состоянии +4.

4. Получен препарат с удельной активностью $4,5.10^9$ Бк/мг 238 U и высокой степенью очистки, содержанием радиоактивных примесей $\leq 10^{-6}$ Бк/Бк

Авторы выражают благодарность кандидату физико-математических наук Т.А. Свиридовой за помощь в выполнении рентгеновского анализа криптомелана.

7

© ФГУП «НИИПА»

ЛИТЕРАТУРА

1. Gosman, A.; Klisky, V.; Kaspar, J.; Vodolan, P. Preparation and application of ²³⁷U for the study of heterogeneous isotope exchange on an ion exchanger // J. Radioanal. Nucl. Chem. Articles. 1988. V. 121, № 2. P. 375–383.

2. Сабельников А.В., Маслов О.Д., Густова М.В. и др. Получение ²³⁷U в фотоядерной реакции ²³⁸U(γ,n) на ускорителе электронов – микротроне МТ– 25. //Радиохимия. 2006. Т. 48, № 2. С.168–171.

3. Маслов О. Д., Божиков Г. А., Иванов П. И., Густова М. В. и др. Применение наноструктурного материала для разделения 238 U и 237 U, получаемого в фотоядерной реакции 238 U(γ , n) 237 U // Радиохимия. 2010. Т. 52, № 1. С. 76–78.

4. Tsujl M., Abe M. Synthesis of cryptomelane–type hydrous manganese dioxide//Solvent Extraction and Ion Exchange, 1984. Vol. 2, № 2. P. 253–274.

5. Jikang Yuan, Wei–Na Li, Sinue Gomez, and Steven L. Suib, Shape– Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three– Dimensional Nanostructures // Am. Chem. Soc. 2005. V. 127, № 41. P. 14184.

6. WWW Table of Radioactive Isotopes [Электронный ресурс] : LBNL Isotopes Project – LUNDS Universitet [сайт LUNDS Universitet]. [Version 2.1, February 1999]. http://ie.lbl.gov/toi/perchart.htm (дата обращения: 24.05.2010).

8